If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+9x-56=0
a = 6; b = 9; c = -56;
Δ = b2-4ac
Δ = 92-4·6·(-56)
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5\sqrt{57}}{2*6}=\frac{-9-5\sqrt{57}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5\sqrt{57}}{2*6}=\frac{-9+5\sqrt{57}}{12} $
| (x=3)2=64 | | 120x=115 | | x²-8x+14=2x-7 | | -4d+2(3+d=)-14 | | 24/32=x/32 | | -4d+2(3+d=-14 | | 3x2-6x=24 | | 2^x×5^-x=2.5 | | (7x+12)+(15x-8)=90 | | U^2-8u=-15 | | (x–5)2=3(x–5) | | )(x–5)2=3(x–5) | | 0=x2+26x+48 | | Y=3.5=0.75x(X-2) | | 3e+9=0 | | 5x+31=8x+57 | | 2x+4=-30-10x | | (x+5)^4+15=129 | | x2-8x-12=36 | | 6x-4=3*(2-x) | | 45t-5=5t+7 | | x/10-9=1 | | f2–4f–12=0 | | 20=-7u+5(u+2) | | x2-6+5=0 | | -7v+21=5(v+9) | | 0.2x=-4,3 | | 5/x=x+2/x | | z/10+8=2 | | 186=2-v | | 4(2x-8)=4(2-2x) | | 3.4x-2x=-7 |